PHYSICAL REVIEW E

VOLUME 52, NUMBER 4

OCTOBER 1995

Systematic adiabatic analysis of a nonlinear oscillator with inertia driven by colored noise
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The Duffing oscillator with inertia excited by colored noise is studied and a colored Fokker-Planck
equation and reduced stationary probability density function is obtained by systematic adiabatic expan-
sion. The second-order moments are presented for different values of system parameters and numerical
simulation is carried out. In the region where perturbation is valid, i.e., where e~0.1, and when correla-
tion time 7 of noise is of the same order of system time scale 1/y, the results of adiabatic expansion

agree very well with that of numerical simulation.

PACS number(s): 05.40.+j, 05.70.Ln

I. INTRODUCTION

Nonlinear oscillators that are subjected to random ex-
citation occur in many areas of science and engineering.
The study of a nonlinear system excited by white Gauss-
ian noise is quite well understood [1]. To model physical
systems realistically, however, it is imperative to take
into account the correlation time of the noise, i.e., use the
so-called colored noise.

Over the last decade substantial work has been carried
out on nonlinear systems where the excitation is due to
colored noise. Much of the work, however, examined the
response behavior of the system that can be represented
by one relevant variable obeying an overdamped equation
of motion that is excited by a color noise. This results in
a system where the effect of inertia is neglected from the
very beginning [2] and two coupled first-order equations
are solved: one for displacement x and the other for
noise y. Even in this case, the coupled system is non-
Markovian and approximate analysis must be used. Vari-
ous methods along this line are outlined very well in Ref.
[2].

In many situations, however, the assumption of over-
damped dynamics neglecting inertia altogether is not ap-
propriate. Great difficulties are encountered when the in-
ertia of the nonlinear system and the correlation time of
the excitation are accounted for in the analysis, as
demonstrated in Refs. [2—-4]. Nevertheless, the work
represented by these references have contributed greatly
to the understanding of the response of the nonlinear dy-
namic systems subjected to colored noise. This work is
an attempt to obtain the effects of inertia within a limited
range.

In this context, the nonlinear system model that has re-
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ceived great attention in the last few decades is the
Duffing oscillator. It is one of the simplest nonlinear sys-
tems which nonetheless demonstrates a highly complex
behavior. In stochastic studies, the Duffing oscillator has
been mostly driven by white noise. However, in reality
this is not always justifiable.

The problem of the Duffing oscillator driven by colored
noise has not been completely solved yet and remains the
source of interest among the researchers. In particular,
recently, the van Kampen expansion method [5] and the
modified stochastic linearization technique [6] were ap-
plied to the Duffing oscillator with the same success in
evaluating the response of this oscillator under exponen-
tially correlated colored noise. In the present work, the
adiabatic expansion [7], which was previously found use-
ful in a stability study [8,9], has been utilized for the same
purpose, and the result is compared with the Monte Car-
lo simulation.

The system that is considered is described by an equa-
tion of the form

%5€+x+dx+bx3=y(t). (1)

A convenient model for the noise is a stationary
Ornstein-Uhlenbeck process, described by the equation

pi=—Ly 1 Y@, @
T T

where £(¢) is the Gaussian white noise with (&(z))=0
and {&(¢)£(0))=6(t). The correlation function of y(z)
thus satisfies

G(eyp(0)y =Ll 3)
27
Note that y(¢) becomes a Gaussian white noise as 7—0
with Q fixed, in which case (y(£))=0 and
(y(t)y(0))=0Q8(2).
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II. ADIABATIC EXPANSION AND REDUCED
PROBABILITY DENSITY

Usually a dynamic system has widely different response
times. The behavior on a very short time scale is often of
no interest. In fact, the purpose of the present paper is to
consider the long-term behavior of the system. The adia-
batic elimination method is consistent with this purpose
of concentrating on the long time scale of the system
[1, 2, 7]. However, the procedure of eliminating the fast
variable is somewhat drastic. A more systematic method
of deriving the reduced Fokker-Planck equation in a per-
turbative manner with higher corrections in powers of a
small parameter is called adiabatic expansion [10-12]. In
the present work, Wilemski’s systematic analysis is fol-
lowed to deal with a nonlinear oscillator excited by
colored noise.

Introducing the scaled variables:

=x/VQ, y'=01/VyQ)y,

k'(x")=k(x)/VQ ,
where k(x)=dx +bx3 is the force due to potential ¥V (x)
associated with the Duffing equation

V(x)=%x2+%x4 i
The new parameters are also introduced: A=1/(y7),
=V'1/y. Rewriting the model in terms of the scaled
variables and new parameters, one obtains the following
system of ordinary differential equations,

CY

(5)

dx' _ lu

dt € ’

du 1 ’ I_L —_ ’

o k'(x") 62(u y'), (6)
day'__ 1

, 1
i ezky +6)»§(t).
This system is solved for long-term behavior with large
value of ¥ (fast relaxation) and arbitrary A, i.e., A=0(1),
€—0. From now on, all primes are omitted in notation
for simplicity. The Fokker-Planck equation correspond-
ing to Eq. (6) is

_1f,a, 2 _
E)p—62 P y+—= 2 3 2+ (u y)|p
1 d . 0
+e {k(X)au ax P ™

where p is the probability density p(x,y,u,t). The re-
duced probability density p(x,t) is marginal density
defined as

P(X,t)=f:° f_:p(x,y,u,t)du dy , (8)
and the moments j, ,, are defined as

j,,,,,,(x,t)=fu"y'"p(x,y,u,t)du dy , 9)
and in particular,

Joo(x,t)=p(x,t) . (10)
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Integrating over the Fokker-Planck equation for the
joint probability p(x,y,u,t), the following equation of
p(x,t) is obtained:

0 19

—plx,t)=———j ). 11

atp(x ) . ale,o(x ) (11
By utilizing a method developed by Wilemski [11], a
closed form expression for p(x,¢) can be derived in the
form of a perturbation expansion in the parameter €. For
this purpose, multiply u"y™ and integrate Eq. (7) to ob-
tain

a . _ 1 ,
Ejn,m(x’t)_ _—63(” +Am )]n,m

. J .
nk(x ).]n —1,m + E;Jn +1,m

2

1 . A
+? n]n—l,m+1+?

m(m_l)jn,m—?.] .

(12)

As €—0 Eq. (12) describes a rapidly damped time evolu-
tion of the moments j, ,, for n,m 70 in a time scale €2, as
indicated by the diagonal term in Eq. (12). The iterative
solution of j,,(x,t) in the asymptotic time regime
(t— o) is then

. had —e2 3 1
1= a,
Jnm (%51) 120 n+Am ot | n+Am
X {—€ |nk(x)j +—a—j
n—1,m x n+1lm
)\'2
+ njn—l,m+1+_2—m(m_1)jn,m—2 .

(13)

The moment j, o is evaluated up to a given order in € by
expressing it in terms of j, o and its derivatives. In order
to derive expressions to the first order in € from Eq. (14),
Ja,0 is evaluated to the zeroth order of € and j,, to the
first order, which requires the evaluation of j, ; and j,,
to the zeroth order. Equation (13) is then simplified to

J1,0(x,t)=—€k(x)p(x,t)
1 € a3
T2 1+ |ax K p(x,t)+0(e) . (14)

Substituting Eq. (14) into Eq. (11) gives the desired equa-
tion for the reduced probability density p(x,?)

D ptx )= [k )+ 5 [plxt) (15)
2 ax
The stationary solution is then
d 15
(x)=Nexp{——x2—=——x*1, (16)
0 P[ 0 20 ]
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25 T T T T T T T T T where 0, =nlAw, n=1,2,...,N, and Av=w,/N. o,
d=1,b=1,Q=1 — .
™ d=4,b=1,Q=1 - represents an upper cutoff frequency beyond which the
’ . g: -ijgj """ A power spectral density may be assumed to be zero. The
' @, appearing in Eq. (17) are independent random phase
angles distributed uniformly over the interval [0,27].
. The period of the stochastic process is Ty =27 /Aw.
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FIG. 1. Stationary probability density distribution py(x ).
which is written in terms of the unscaled and unprimed SR ) 7
variables with N being the normalization constant.
O 1 1 1 1
III. MONTE CARLO SIMULATION 0 ! 2, 8 ¢ °
The numerical studies are also carried out to compare
with the above analytical results. There are variety of di- ! ' i ' ! N
. . . . . Monte Carlo o—
gital simulation methods that are used in studies of sta- analytical approximation -+--
tistical physics. A widely used method to solve a stochas-
tic differential equation is the Box-Muller algorithm
[13—-15]. In this paper, the noise is generated from a
power spectral density function [16,17], which can be
considered as an alternative method. The relative merits
of these two methods have been discussed in the litera-
ture [18,19]. The spectral method that is used in this
work has been found to be suitable for the type of non-
linear analysis presented here [20,21,19]. The one-
dimensional Gaussian noise was simulated by the follow-
ing series with a large N: ()
_N—1 0 1 1 1 - 1
y()=v2 S [25(0,)A0]?cos(w,t+®,), (17 ! 18 28 3.4 4.2 5
n=0
05 T T T T T T T T T
0 [ Monte Carlo -o—
-6 T T T T T T T 0.45 analytical approximation -+-- ]
0.4 . A T
A ¥
% 7
v
0.2 . 4
(0
30 35 40 45 50
O 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4

t (sec)

FIG. 2. Time evolution of the second-order moment {x?)
obtained from Monte Carlo simulation.

FIG. 3. Second-order moment {x2) as functions of b, Q, and
d, respectively, by theoretical analysis and Monte Carlo simula-
tion. (a)d=1,0=1;(b)d=1,b=1;(c) b=1,0=0.5.
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Corresponding to the exponential correlation function,
the power spectral density S(w) has the form

S(o)=-2 1 . (18)

27 w0+ (1/7)?

Using the Runge-Kutta method to integrate Eq. (1),
the long-term response of the system that is excited by
colored noise is found, from which the statistics, such as
standard deviation or the second-order moments, are ob-
tained.

IV. RESULTS AND DISCUSSION

To satisfy the requirement that y be large, ¥ in Eq. (1)
is taken as 100. At the same time, 7 is chosen as 0.01 to
ensure that A=1/(ry)=0(1), thus e=V'1/y =0.1.

Figure 1 shows the stationary probability density dis-
tribution p,(x) with different values of d, b, and Q that
were obtained from preceding adiabatic expansion
analysis. Figure 2 shows the time evolution of the
second-order moment {x2), which was calculated by
means of the Monte Carlo simulation. It can be seen that
(x?) becomes stable in a short time. Figure 3 shows that
second-order moment {x?2) as functions of b, Q, and d,
respectively, from both theoretical analysis and Monte
Carlo simulations. The theoretical analysis means the
evaluation of (x2)= [® x?p,(x)dx. It can be seen
clearly that the results of the theoretical analysis are in
very good agreement with those of the numerical simula-
tion.

For the limiting case in which b=0, the oscillator
response can be solved exactly and the mean square is ob-
tained as

2\ “+ o0 Q l l
= d
Gh=[_" 1w P +(1/17 ([d—a/y Pta?
(19)
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V(x)
N

FIG. 4. Potential V(x)=(d/2)x2+(b/4)x* with d=20,
b=1and d=20, b=0.

By using the computer algebra system MAPLE for b =0,
d=1, Q=1, it is obtained that {x?)=0.498. The Monte
Carlo simulation gives {x2)=0.496, which agrees very
well with the exact value. The point at b =0 forms an an-
chor point to verify the accuracy of both the theoretical
and the simulation methods. When d is large compared
to b, the system can be approximated by the correspond-
ing linear system. Figure 4 shows the potential V(x)
with d =20, b=1, and d =20, b=0. In the range of
significance, the potentials are almost identical. The ex-
act mean square for the linear oscillator with d =20.25,
0=0.5is {x2)=0.0112, while the Monte Carlo simula-
tion gives (x%)=0.0111for d =20.25,02=0.5,and b=1
(the nonlinear term is included). This agreement verifies
the validity of the Monte Carlo simulation results.
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